Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Clin Microbiol ; 58(8)2020 07 23.
Article in English | MEDLINE | ID: covidwho-999200

ABSTRACT

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a severe international shortage of the nasopharyngeal swabs that are required for collection of optimal specimens, creating a critical bottleneck blocking clinical laboratories' ability to perform high-sensitivity virological testing for SARS-CoV-2. To address this crisis, we designed and executed an innovative, cooperative, rapid-response translational-research program that brought together health care workers, manufacturers, and scientists to emergently develop and clinically validate new swabs for immediate mass production by 3D printing. We performed a multistep preclinical evaluation of 160 swab designs and 48 materials from 24 companies, laboratories, and individuals, and we shared results and other feedback via a public data repository (http://github.com/rarnaout/Covidswab/). We validated four prototypes through an institutional review board (IRB)-approved clinical trial that involved 276 outpatient volunteers who presented to our hospital's drive-through testing center with symptoms suspicious for COVID-19. Each participant was swabbed with a reference swab (the control) and a prototype, and SARS-CoV-2 reverse transcriptase PCR (RT-PCR) results were compared. All prototypes displayed excellent concordance with the control (κ = 0.85 to 0.89). Cycle threshold (CT ) values were not significantly different between each prototype and the control, supporting the new swabs' noninferiority (Mann-Whitney U [MWU] test, P > 0.05). Study staff preferred one of the prototypes over the others and preferred the control swab overall. The total time elapsed between identification of the problem and validation of the first prototype was 22 days. Contact information for ordering can be found at http://printedswabs.org Our experience holds lessons for the rapid development, validation, and deployment of new technology for this pandemic and beyond.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques/instrumentation , Coronavirus Infections/diagnosis , Equipment Design/methods , Nasopharynx/virology , Pneumonia, Viral/diagnosis , Printing, Three-Dimensional , Specimen Handling/instrumentation , Adult , Aged , Aged, 80 and over , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/methods , Coronavirus Infections/virology , Female , Hospitals , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Specimen Handling/methods , Translational Research, Biomedical/organization & administration , Young Adult
2.
medRxiv ; 2020 Apr 17.
Article in English | MEDLINE | ID: covidwho-823249

ABSTRACT

The SARS-CoV-2 pandemic has caused a severe international shortage of the nasopharyngeal swabs that are required for collection of optimal specimens, creating a critical bottleneck in the way of high-sensitivity virological testing for COVID-19. To address this crisis, we designed and executed an innovative, radically cooperative, rapid-response translational-research program that brought together healthcare workers, manufacturers, and scientists to emergently develop and clinically validate new swabs for immediate mass production by 3D printing. We performed a rigorous multi-step preclinical evaluation on 160 swab designs and 48 materials from 24 companies, laboratories, and individuals, and shared results and other feedback via a public data repository (http://github.com/rarnaout/Covidswab/). We validated four prototypes through an institutional review board (IRB)-approved clinical trial that involved 276 outpatient volunteers who presented to our hospital's drive-through testing center with symptoms suspicious for COVID-19. Each participant was swabbed with a reference swab (the control) and a prototype, and SARS-CoV-2 reverse-transcriptase polymerase chain reaction (RT-PCR) results were compared. All prototypes displayed excellent concordance with the control (κ=0.85-0.89). Cycle-threshold (Ct) values were not significantly different between each prototype and the control, supporting the new swabs' non-inferiority (Mann-Whitney U [MWU] p>0.05). Study staff preferred one of the prototypes over the others and the control swab overall. The total time elapsed between identification of the problem and validation of the first prototype was 22 days. The swabs are available to order (http://printedswabs.org). Our experience holds lessons for the rapid development, validation, and deployment of new technology for this pandemic and beyond.

3.
mBio ; 11(3)2020 06 25.
Article in English | MEDLINE | ID: covidwho-616491

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused a severe, international shortage of N95 respirators, which are essential to protect health care providers from infection. Given the contemporary limitations of the supply chain, it is imperative to identify effective means of decontaminating, reusing, and thereby conserving N95 respirator stockpiles. To be effective, decontamination must result in sterilization of the N95 respirator without impairment of respirator filtration or user fit. Although numerous methods of N95 decontamination exist, none are universally accessible. In this work, we describe a microwave-generated steam decontamination protocol for N95 respirators for use in health care systems of all sizes, geographies, and means. Using widely available glass containers, mesh from commercial produce bags, a rubber band, and a 1,100-W commercially available microwave, we constructed an effective, standardized, and reproducible means of decontaminating N95 respirators. Employing this methodology against MS2 phage, a highly conservative surrogate for SARS-CoV-2 contamination, we report an average 6-log10 plaque-forming unit (PFU) (99.9999%) and a minimum 5-log10 PFU (99.999%) reduction after a single 3-min microwave treatment. Notably, quantified respirator fit and function were preserved, even after 20 sequential cycles of microwave steam decontamination. This method provides a valuable means of effective decontamination and reuse of N95 respirators by frontline providers facing urgent need.IMPORTANCE Due to the rapid spread of coronavirus disease 2019 (COVID-19), there is an increasing shortage of protective gear necessary to keep health care providers safe from infection. As of 9 April 2020, the CDC reported 9,282 cumulative cases of COVID-19 among U.S. health care workers (CDC COVID-19 Response Team, MMWR Morb Mortal Wkly Rep 69:477-481, 2020, https://doi.org/10.15585/mmwr.mm6915e6). N95 respirators are recommended by the CDC as the ideal method of protection from COVID-19. Although N95 respirators are traditionally single use, the shortages have necessitated the need for reuse. Effective methods of N95 decontamination that do not affect the fit or filtration ability of N95 respirators are essential. Numerous methods of N95 decontamination exist; however, none are universally accessible. In this study, we describe an effective, standardized, and reproducible means of decontaminating N95 respirators using widely available materials. The N95 decontamination method described in this work will provide a valuable resource for hospitals, health care centers, and outpatient practices that are experiencing increasing shortages of N95 respirators due to the COVID-19 pandemic.


Subject(s)
Betacoronavirus/radiation effects , Coronavirus Infections/prevention & control , Decontamination/instrumentation , Decontamination/methods , Masks , Steam , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/transmission , Coronavirus Infections/virology , Decontamination/standards , Disease Transmission, Infectious/prevention & control , Disinfection/instrumentation , Disinfection/methods , Equipment Reuse/standards , Filtration , Humans , Microwaves , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Reproducibility of Results , SARS-CoV-2 , Sterilization , United States
SELECTION OF CITATIONS
SEARCH DETAIL